
Fall 23 Div II Week 3 - Solution
Sketches
(taken from editorials of original problems)

Problem A
(Source: Codeforces Round 238 (Div. 2) Problem A)
Observe that in the final configuration the heights of the columns are in non-decreasing order.
Also, the number of columns of each height remains the same. This means that the answer to
the problem is the sorted sequence of the given column heights.

Solution complexity: O(nlogn), since we only need to sort. Make sure you know how to use the
default sorting methods from your favorite language: here is a helpful link.

Problem B
(Source: Problem by Pedro Paredes)
There is a dent if the position of two consecutive cars is overlapping. So to check this, sort the
car positions and then check if any pair of consecutive cars overlaps.

Problem C
(Source: Codeforces Round #661 (Div. 3) Problem A)
Firstly, let's sort the initial array. Then you can observe that the best way to remove elements is
from smallest to biggest. And if there is at least one 𝑖 such that 2≤𝑖≤𝑛 and 𝑎[𝑖]−𝑎[𝑖−1]>1 then the
answer is "NO", because we have no way to remove 𝑎[𝑖−1]. Otherwise, the answer is "YES".

Problem D
(Source: Codeforces Round 888 (Div. 3) Problem B)
Note that after doing any number of operations, all the indices containing odd numbers still
contain odd numbers and all indices containing even numbers also contain even numbers.
Consequently, since the parity of the elements in the sorted array is preserved, the even and
odd subsequences of the elements can be sorted separately, and the answer is YES. If the
parity of the elements is not preserved after sorting, the answer is NO. Another way of seeing
this is that if we sort the array and check that the positions containing odd elements are still the
same (and the same for even), then the answer is YES.

https://usaco.guide/bronze/intro-sorting


Problem E
(source: Codeforces Round 521 (Div. 3) Problem E)
First note that we don’t care about the problems themselves, only their count. So convert the
input into a sorted sequence of the counts of each problem type. You can do this using a symbol
table/map/dictionary, or by sorting the array and looking at consecutive runs of elements.

Now, note that the total number of problems is at most n, so we can do the following: for each
number i between 1 and n, let’s compute the maximum number of problems in a set of thematic
contests where the last contest contains exactly i problems. Let's do it greedily by adding more
contests one by one until we can’t:

Let the number of problems in the current contest be cur (at the beginning of iteration this is just
i). Let’s look at the problem types we haven’t used yet and pick the one with the most problems.
Since we sorted the array of problem counts, this is doable in constant time. If the number of
problems of this type is less than cur, then we are stuck and we can’t add any more contests to
this set. Otherwise, we add that contest to the set and we set cur to cur/2 if it is even, otherwise
we are stuck and can’t add any more contests to this set. And now we repeat until we run out of
contests.

We do the previous method n times, but notice that since we cur is initially at most n and we
halve its value in each iteration, we can only do at most log n iteration before cur is 0. So the
overall runtime is O(nlogn).

One last question: why can we always pick the unused problem type with the maximum number
of problems in each step of the greedy method? Suppose we have two contests with numbers
of problems x and y with x < y. Let the number of problems of the first contest topic be ctx and
the number of problems of the second contest topic be cty. If ctx > cty, we can swap these
topics (because x < y and ctx > cty) and it still satisfies the thematic problems rule, which means
we can always pick the problem type with most problems first.


